Search results for "Abelian variety"
showing 6 items of 6 documents
An Arakelov inequality in characteristic p and upper bound of p-rank zero locus
2008
In this paper we show an Arakelov inequality for semi-stable families of algebraic curves of genus $g\geq 1$ over characteristic $p$ with nontrivial Kodaira-Spencer maps. We apply this inequality to obtain an upper bound of the number of algebraic curves of $p-$rank zero in a semi-stable family over characteristic $p$ with nontrivial Kodaira-Spencer map in terms of the genus of a general closed fiber, the genus of the base curve and the number of singular fibres. An extension of the above results to smooth families of Abelian varieties over $k$ with $W_2$-lifting assumption is also included.
Smooth structures on algebraic surfaces with cyclic fundamental group
1988
Automorphisms of hyperelliptic GAG-codes
2009
Abstract We determine the n –automorphism group of generalized algebraic-geometry codes associated with rational, elliptic and hyperelliptic function fields. Such group is, up to isomorphism, a subgroup of the automorphism group of the underlying function field.
Non-archimedean hyperbolicity and applications
2018
Inspired by the work of Cherry, we introduce and study a new notion of Brody hyperbolicity for rigid analytic varieties over a non-archimedean field $K$ of characteristic zero. We use this notion of hyperbolicity to show the following algebraic statement: if a projective variety admits a non-constant morphism from an abelian variety, then so does any specialization of it. As an application of this result, we show that the moduli space of abelian varieties is $K$-analytically Brody hyperbolic in equal characteristic zero. These two results are predicted by the Green-Griffiths-Lang conjecture on hyperbolic varieties and its natural analogues for non-archimedean hyperbolicity. Finally, we use …
Picard and the Italian Mathematicians: The History of Three Prix Bordin
2016
It is usually said that in the transition period between 19th and 20th centuries, French scholars (mainly Picard and Humbert) as well as Italian scholars (mainly Castelnuovo, Enriques and Severi) were interested in the study of algebraic surfaces, though using different methods.
Special Families of Curves, of Abelian Varieties, and of Certain Minimal Manifolds over Curves
2006
This survey article discusses some results on the structure of families f:V-->U of n-dimensional manifolds over quasi-projective curves U, with semistable reduction over a compactification Y of U. We improve the Arakelov inequality for the direct images of powers of the dualizing sheaf. For families of Abelian varieties we recall the characterization of Shimura curves by Arakelov equalities. For families of curves we recall the characterization of Teichmueller curves in terms of the existence of certain sub variation of Hodge structures. We sketch the proof that the moduli scheme of curves of genus g>1 can not contain compact Shimura curves, and that it only contains a non-compact Shimura c…